Distributed Algorithmic Foundations of Dynamic Networks

Gopal Pandurangan

Stochastic Graph Models Workshop, ICERM, March 2014
Distributed Network

Undirected network/graph.

Nodes --- computers/hosts/agents.

Edges --- communication links.

Neighbors communicate via message passing.

Nodes initially only have local knowledge.
Static Networks

- Nodes never crash.
- Edges maintain operational status forever.
- Focus of much of the established theory.
Dynamic Networks

- The network topology changes continuously over time.
- Nodes and/or edges may come and go.
- Dynamism due to node behavior, faults, traffic, and other factors.
Dynamic Networks Galore

- Peer-to-Peer (P2P) Networks
 - Large-scale, highly dynamic.
 - \(\sim 50\%\) node churn.
 - Examples: Skype, BitTorrent, ...
 - Significant fraction of Internet traffic.

- Mobile, ad hoc wireless, sensor, vehicular networks
 - Moving nodes.
 - Changing environmental conditions.
 - Failures of nodes/links.

- Social networks
 - Examples: Facebook, Twitter...
 - Nodes (people) and connections appear and disappear.
Fundamental Problems in Distributed Computing

• **Agreement**: Nodes have to agree on a common value.

• **Leader Election**: One unique node in the network should be elected as a leader.

• **Information spreading**: Broadcast data from some nodes to all nodes.

• **Storage and Search**: Find data and resources in the network; store data reliably and securely.

• **Byzantine problems**: Tolerate malicious nodes.

Building blocks of distributed computing.
Distributed Computation in Dynamic Networks

• Dynamic networks pose non-trivial challenges in solving even basic distributed problems.
• Models and algorithmic techniques developed for static networks are not applicable to dynamic networks.
• Need for rigorous models and algorithmic techniques for dynamic networks.
• The rest of the talk is a step in this direction...
Road Map

• A model for dynamic networks.
• Agreement problem.
• Byzantine agreement.
• Storage and Search.
• Information Spreading – Rajmohan Rajaraman’s talk on Wednesday.
• Summary.
Dynamic Network Model

- Sequence of graphs: G^0, G^1, G^2, \ldots
 --- A graph process

Initial network

- Node churn: up to $\leq \epsilon n$ nodes per round. Can target all nodes in $1/\epsilon$ rounds!

Chosen by an adversary --- can be oblivious or adaptive

- G^0, G^1, G^2, \ldots are expanders
- Constant degrees and $O(\log n)$ diameter
- Expansion α depends on ϵ
Distributed Computing Model

• Computation proceeds in a sequence of synchronous rounds.
• Nodes initially have only local knowledge.
• In each round, each node can communicate with its (current) neighbors by exchanging messages of small (polylogarithmic) size.
• **Goal:** Fast algorithms --- terminate in polylogarithmic (in network size) number of rounds.
Road Map

• A model for dynamic networks.
• Agreement problem.
• Byzantine agreement.
• Storage and Search.
• Summary.
Stable Agreement (SA)

Adversary assigns nodes in G^0 either 0 or 1.

Node can (irrevocably!) decide on 0 or 1.

Some nodes can remain undecided but no conflicting decisions!

Problem Definition

① Almost Everywhere Agreement: After some rounds, almost all nodes decide on common value x.

② Validity: Some node in G^0 must have started with x.

③ Stability: Maintain Almost Everywhere Agreement ad infinitum.
Results
Augustine, Pandurangan, Robinson, Upfal, SODA, 2012

Oblivious Adversary
We can reach Stable Agreement despite $\leq \epsilon n$ churn per round; $O(\log^2 n)$ rounds and $O(\log^c n)$ size messages whp.

Adaptive Adversary
We can reach SA despite $\epsilon \sqrt{n}$ churn; $O(\log^c n)$ rounds and $O(n^c)$ size messages whp.

Next: Focus on result for oblivious adversary.
Simple flooding-based algorithm

Doesn’t work!

Code for every node u:

Set $x := \text{input bit (assigned to } u \text{ by adversary)}$

Forever flood message $<x>$

Upon receiving message $<y>$ from neighbor:

Set $x = \max(y, x)$

After $O(\log n)$ steps decide on x.
How the adversary can ruin the day...

- nodes are replaced in every step.

Information of u cannot spread!

Adversary assigns inputs:
- all nodes have 0;
- node u starts with 1

Adversary suppresses node u (has constant degree!)

Shortly before decision, adversary allows u to spread value 1.
Our approach

Use randomization to defeat adversary

Techniques for building SA Protocol

1. Leverage graph expansion to show information spreading

2. Estimate support of input values using exponential distribution
Dynamic Distance (DD)
Suppose node $u \in G^s$ floods message m.
$DD_s(u \rightarrow v) =$ number of rounds until m reaches v.

Influence Set of u after R rounds starting at round s:
\[
\text{Infl}_s(u, R) = \{ v \in G^{s+R} : DD_s(u \rightarrow v) \leq R \}
\]

In **static graphs**:
$DD_r(u \rightarrow v) =$ graph distance between u, v
$\text{Infl}_r(u, R) =$ causal influence set of u
Dynamic Distance (DD) & Influence Sets

DD can be larger than “static” distance

DD(u,v) is infinite if:
1. v is prematurely churned out
2. u is shielded by churn nodes

How many nodes do we need to start with and how long does it take to influence almost all nodes?
Influence of a set of nodes

Graphs G^0, G^1, G^2, \ldots have expansion $\geq \alpha$.

Churn is $\leq \epsilon n$ per round.

$\text{Infl}(U, T) := \bigcup_{u \in U} \text{Infl}(u, T)$

Lemma (Growth of Influence Sets)

Fix any $\theta > \frac{\epsilon(1+\alpha)}{\alpha}$ and consider set U of θn nodes. After $T \in O(1)$ rounds:

$$|\text{infl}(U, T)| \geq (1 - \theta)n$$
Proof idea

1. Show that U influences $n/2$ nodes within T rounds:
 \[
 |\text{infl}(U, 1)| \geq (\theta - \epsilon)n(1 + \alpha) = \theta n(1 + \alpha) - \epsilon n(1 + \alpha)
 \]
 \[
 |\text{infl}(U, i)| \geq \theta n(1 + \alpha)^i - \epsilon n \sum_{k=1}^{i} (1 + \alpha)^k \geq n/2
 \]

2. Jump to round $2T$. Consider set S of size θn and use expansion argument in reverse back to round T. Shows: S is influenced by at least $n/2 + 1$ nodes.

$\Rightarrow U$ influences S within $2T$ rounds.
How many nodes can the adversary suppress?

- Growth of influence sets not strong enough.
- Doesn’t say anything about influence of individual nodes.

Consider a set U of θn nodes. There is a node $u^* \in U$ s.t. after $R \in O(\log n)$ rounds, we have

$$|\text{infl}(u^*, R)| > (1 - \theta)n$$
Finding a node with high influence

Consider a set U of θn nodes. There is a node $u^* \in U$ s.t. after $R \in O(\log n)$ rounds, we have

$$|\text{infl}(u^*, R)| > (1 - \theta)n$$

Corollary 1: At most θn nodes can be suppressed!

We get a node $u^* \in U$ with $|\text{infl}(u^*, R)| > (1 - \theta)n$ in $O(\log n)$ rounds.
Estimating the support of a value

Adversary assigns \(k \) nodes value 1 and \(n - k \) nodes value 0.

Goal: For any \(\delta > 2\theta \), at least \((1 - \theta)n \) nodes estimate \(m = \max(k,n-k) \) to be within \([(1 - \delta)m, (1 + \delta)m] \) whp.

Property of Exponential Distribution:
Consider \(Y_1, \ldots, Y_j \) independent RVs of rate \(\lambda \). The minimum of all RVs is exponentially distributed with rate \(j\lambda \).
Protocol for Support Estimation

Intuition for correctness:
- **Oblivious** adversary does not know random choices.
- Cannot reliably suppress small samples.

Accurate only on expectation; to get concentration, we perform $O(\log n)$ iterations.

- Generate a sample s_0 from exp.dist with rate 1.
- Initialize flooding of s_0.
- For $O(\log n)$ rounds, keep flooding the smallest encountered sample s.
- After $O(\log n)$ rounds, output estimate $k = 1/s$.

Code for node u:
- Generate a sample s_0 from exp.dist with rate 1.
- Initialize flooding of s_0.
- For $O(\log n)$ rounds, keep flooding the smallest encountered sample s.
- After $O(\log n)$ rounds, output estimate $k = 1/s$.

Intuition for correctness:
- **Oblivious** adversary does not know random choices.
- Cannot reliably suppress small samples.
Protocol for Stable Agreement

Node u starts with bit b:

At every checkpoint $R (= O(\log n) \text{ rounds})$ do:

- Initiate support estimation of # of 1s.
- Generate random number r_u from $[1, n]$.
- Flood smallest received (r_v, b) pair; initially (r_u, b).
- Use estimation of # of 1s (initiated R rounds ago):

 \[
 \#(1) := 0 \quad \#(1) := 1
 \]

Whp, nodes that estimate $\#(1)$ to be above $1/4 \cdot n$ is $\leq \theta n$.

How to handle $\approx 50:50$ case?
How to handle $\approx 50:50$ case?

If then:

Let (r_v, b_v) be flooding message with smallest r_v that u received since last checkpoint (R rounds).

Set $b := b_v$

After $O(\log n)$ phases:

Let $(#(1), #(0)) = \text{outcome of last support estimation}$

If $#(1) > n/2$ then decide on 1 and flood decision.

If $#(0) > n/2$ then decide on 0 and flood decision.

Otherwise remain undecided.

Why does this help?

- Adversary tries to suppress node with smallest r_v.
- It fails with constant probability.
- In $O(\log n)$ iterations fails once whp and sways decision one way.
Road Map

• A model for dynamic networks.
• Agreement problem.
• Byzantine agreement.
• Storage and Search.
• Summary.
Byzantine Agreement

Termination: Eventually every correct node decides on a value.

Almost Everywhere Agreement: All but $o(n)$ correct nodes decide on the same value.

Validity: If all correct nodes start with value v, then the decision is v.

[Dwork, Peleg, Pippenger, Upfal’88]

Sparse network.

Each node has input value.

Some nodes are Byzantine.
Dynamic Network Model with Byzantine Nodes

Augustine, Pandurangan, Robinson, PODC 2013

Synchronous Rounds

Sequence G^1, G^2, \ldots
Communication in round r determined by $G^r = (V^r, E^r)$
Stable network size n.

Adaptive adversary churns
$O(\sqrt{n}/\log^c n)$ nodes per round.

Oblivious adversary rewires edges in each round:
Each G^r is d-regular expander

$O(\sqrt{n}/\log^k n)$ **Byzantine nodes**:
Can deviate from protocol
The Power of the Adversary

Adversary controls edges:
⇒ Byzantine nodes are mobile.

No private channels:
Byz nodes know entire state.

"Worst case": Same number of 0s and 1s.

Ways to keep network undecided:
1. inject fake values
2. remove strategic nodes
Our Results

Algorithm

Assume $O(\sqrt{n}/\log^{k+3} n)$ churn per round and $O(\sqrt{n}/\log^{k} n)$ Byzantine nodes. There is a BAE algorithm that takes $O(\log^3 n)$ rounds, using messages of $O(\log^2 n)$ size. ($k \in \Theta(1)$)

Lower Bound

Assume $O(\sqrt{n \log n})$ churn per round. Complexity of a (B)AE algorithm is $\Omega(\sqrt{n})$.

⇒ For polylog time complexity we need churn $\in \tilde{O}(\sqrt{n})$.

Augustine, Pandurangan, Robinson, PODC 2013
Overview of the Algorithm

Providing almost uniform sampling to most nodes via random walks.

Converging to agreement via majority rule.
Random Sampling by Token Forwarding

A Phase of Random Walks: [Code for Node u]

Initially: Generate $h \log n$ tokens; store in BUF (FIFO buffer)
Token has fields $\langle id_u, TTL, msg \rangle$; $TTL = \tau = \Theta(\log n)$.

For $\Theta(\log^2 n)$ rounds do:

Send $\leq h \log n$ tokens of BUF to random neighbors and decrease their TTL fields.
Add received tokens to BUF.

Return tokens in BUF with TTL

Nodes in CORE remain in network for $\Theta(\log^2 n)$ rounds.

Theorem – Dynamic Sampling

There exists set CORE of size $n - O(\sqrt{n}/ \log^{k-4} n)$ such that:

1. All except $O(\sqrt{n}/ \log^{k-6} n)$ nodes in CORE rcv $\Theta(\log n)$ tokens each;
2. received tokens originated with almost uniform ($\pm \frac{1}{n^3}$) probability from nodes in CORE.
The BAE Algorithm

Code for Node u:

Initially: Set x_u to input value $\in \{0, 1\}$.

In Phase $i = 1, \ldots, \Theta(\log n)$ **do:**

- Run random walk implementation.
- Pick 2 samples s_1, s_2 rcvd in this phase:
 - Set x_u to majority value of x_u, s_1, s_2.
- Decide on x_u.

If $u \in \text{CORE}$, *then* s_1, s_2 almost uniform among Core

Theorem – Dynamic Sampling

There exists set CORE of size $n - O(\sqrt{n}/\log^{k-4} n)$ such that:

1. All except $O(\sqrt{n}/\log^{k-6} n)$ nodes in CORE rcv $\Theta(\log n)$ tokens each;
2. received tokens originated with almost uniform $(\pm \frac{1}{n^3})$ probability from nodes in CORE.
Byzantine nodes can simulate churn

Suppose network $\mathcal{H} = (H^0, H^1, \ldots)$ has $\epsilon_1 \sqrt{n}/\log^k n$ Byz nodes and $\epsilon_2 \sqrt{n}/\log^{k+3} n$ churn per round.

Suppose network $\mathcal{G} = (G^1, G^2, \ldots)$ has $(\epsilon_1 + \epsilon_2) \sqrt{n}/\log^k n$ Byz nodes and 0 churn.

For every run α on \mathcal{H}, there is run β on \mathcal{G} where correct nodes receive same tokens, for first $O(\log^3 n)$ rounds.

Sufficient to prove properties for \mathcal{G} (only Byz)!
Bounding Impact of Byzantine Nodes

Random walk of length $\Theta(\log n)$ required for mixing on expander.

Show:
1. Most tokens complete $\Theta(\log n)$ steps in $O(\log^2 n)$ rounds.
2. $\geq n - O(\sqrt{n}/\log^{k-2} n)$ nodes "unaffected" by Byz nodes.

Assume Byzantine nodes generate "legit" tokens (otherwise ignored).

G' constant deg $\Rightarrow O(\log^2 n)|\text{Byz}|$ nodes affected by Byz nodes.

G' regular $\Rightarrow \forall r$: unaffected nodes receive
 $\leq h \log n$ tokens (expectation), and
 $\leq 2h \log n$ tokens (whp).

Token is **unaffected** if it only reached unaffected nodes.

In round r : unaffected token delayed for $\leq r$ rounds (whp).

\Rightarrow Unaffected tokens complete $\Theta(\log n)$ steps in $O(1/\log^2 n)$ rounds.

$\geq n - O(\sqrt{n}/\log^{k-2} n)$ nodes unaffected

\Rightarrow most tokens unaffected.
Theorem – Dynamic Sampling

There exists set CORE of size \(n - O(\sqrt{n}/ \log^{k-4} n) \) such that:

1. All except \(O(\sqrt{n}/ \log^{k-6} n) \) nodes in CORE rcv \(\Theta(\log n) \) tokens each;
2. received tokens originated with almost uniform \((\pm \frac{1}{n^3}) \) probability from nodes in CORE.

\[A = \text{set of affected nodes}; \text{ neighbors of Byz in some round} \]

\[|H^r| = n - O(\sqrt{n}/ \log^{k-2} n) \]

\[|\text{CORE}| = n - O(\sqrt{n}/ \log^{k-4} n) \]

CORE has no Byzantine neighbors.

\[\Rightarrow O(\sqrt{n}/ \log^{k-6} n) \text{ tokens across cut in } \Theta(\log^2 n) \text{ rounds.} \]

\[\Rightarrow O(\sqrt{n}/ \log^{k-6} n) \text{ nodes in CORE have "outside" tokens.} \]

In each \(r \): There is \textbf{expander} \(H^r \subset G^r \setminus (\text{Byz} \cup A) \) \text{ and } \(|H^r| = n - O(\text{Byz} \cup \text{Aff}) \)

\[\Rightarrow \log(n \sqrt{\log^{k-2} n}) \text{ non affected nodes.} \]
Theorem – Dynamic Sampling

There exists set CORE of size $n - O\left(\sqrt{n}/\log^{k-4} n\right)$ such that:
1. All except $O\left(\sqrt{n}/\log^{k-6} n\right)$ nodes in CORE rcv $\Theta(\log n)$ tokens each;
2. received tokens originated with almost uniform $(\pm \frac{1}{n^3})$ probability from nodes in CORE.

\mathcal{G}: dynamic network with Byzantine \quad \mathcal{P}: preserving dynamic network

Idea: Transfer mixing properties of \mathcal{P} to \mathcal{G}.
\Rightarrow Distribution bounds hold

\mathcal{P} is standard dynamic network:
$\pm \frac{1}{n^3}$ close to uniform after $\Theta(\log n)$ steps;
[Das Sarma, Molla, Pandurangan, DISC 12]
Convergence to AE Agreement

"Worst case": Same number of 0s and 1s in CORE.

all 0 \quad n/2 + \epsilon \sqrt{n} \quad all 1

Can we reach an imbalance $> \epsilon \sqrt{n}$?

For each u define random var Y_u:
If $x_u = 0$, set $Y_u = 1$ iff x_u changed to 1.
If $x_u = 1$, set $Y_u = -1$ iff x_u changed to 0.

Let $Y = \sum_u Y_u$, Show $\Pr \left[Y \geq c \sqrt{n} \right]$ is constant.

Define $Z = \frac{Y - \mathbb{E}[Y]}{\sqrt{\text{Var}[Y]}}$. CLT \Rightarrow Z converges to normal distribution.

\Rightarrow Constant probability to achieve large imbalance.

\Rightarrow In $\Theta(\log n)$ phases (each of $\Theta(\log^2 n)$ rounds) agreement whp.
Road Map

• A model for dynamic networks.
• Agreement problem.
• Byzantine agreement.
• Storage and Search.
• Summary.
Storage and Search of Data Items

Node can request storage of data item among peers.

Nodes can search for item.

In real world P2P Networks
- high churn – all the time!
- topology changes

Goal: scalable search/storage algorithms for dynamic P2P networks with churn

Augustine, Molla, Morsy, Pandurangan, Robinson, Upfal, SPAA 2013.
Dynamic Network Model

- Synchronous rounds: compute-send-receive
- Oblivious adversary controls churn and edges
 - $O(n / \log^{1+\epsilon} n)$ churn per round
 - Network size n is stable
 - Dynamic network sequence G^1, G^2, \ldots
 - $G^r = (V^r, E^r)$
 - Each G^r is d-regular expander
Communication Model

Node u entering in r can communicate with neighbors in G^r.

u can learn ids of other nodes.

Direct communication with “learnt” nodes

Ways to Communicate:
1. edges of G^r - controlled by adversary!
2. direct links to “learnt” nodes

Messages of $O(\log^2 n)$ size over each link
Search & Storage Revisited

Each G_r is constant degree expander

But $O(n/\text{polylog}(n))$ churn per round!

Adversary can isolate parts of the network by churning!

Storage

$n - o(n)$ nodes can store items for a polynomial number of rounds (whp).

Search

$n - o(n)$ nodes can retrieve available items in $O(\log n)$ rounds (whp).
Search & Storage Revisited

<table>
<thead>
<tr>
<th>Storage</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n - o(n)) nodes can store items for a polynomial number of rounds (whp).</td>
<td>(n - o(n)) nodes can retrieve available items in (O(\log n)) rounds (whp).</td>
</tr>
</tbody>
</table>

A Simple Flooding Based Solution

Storage(key,item):
- flood \(<\text{STORE}, \text{key}, \text{item}>\)
- upon rcvng flooding msg,
- locally store item

Search(key):
- flood \(<\text{id}_u, \text{SEARCH}, \text{key}>\)
- upon rcvng flooding msg,
- send item to \(u \) (direct link)

Problem 1: \(O(n) \) nodes

Problem 2: High message complexity

Goal: scalable search/storage algorithms for dynamic P2P networks with churn
Our Solution – Key Ingredients

Building Block - Committees
Forming and maintaining **committee** of $\Theta(\log n)$ randomly chosen nodes.

Building Block - Landmarks
Constructing **landmark tree** of randomly chosen nodes of size $\in [\Omega(\sqrt{n}), O(n^{1/2+\epsilon})]$.

Soup Theorem
There exists set Mix of size $n - O(n/ \log^{1+\epsilon} n)$:
- A **random walk** ending at any $u \in \text{Mix}$, originates at any $v \in \text{Mix}$ with prob $\frac{1}{n} \pm O(\frac{1}{n})$.

Landmarks point to committee members.

A “soup” of mixing random walk tokens.

Similar to the “Dynamic Sampling” Theorem.
Storage and Search Algorithms

Building Block - Committees

Forming and maintaining **committee** of $\Theta(\log n)$ randomly chosen nodes.

Building Block - Landmarks

Constructing **landmark tree** of randomly chosen nodes of size $\in [\Omega(\sqrt{n}), O(n^{1/2+\epsilon})]$.

Storage request by u for (key,item):

- u creates storage committee $SCom$.
- Members of $SCom$ store (key,item).
- Every $\Theta(\log n)$ rounds:
 - $SCom$ creates new landmarks (old landmarks discarded).

Retrieval of item by node v:

- v creates search comm Com.
- Nodes in Com create landmarks.
- For $\Theta(\log n)$ rounds do:
 - If landmark w encounters storage landmark z:
 - z reveals $SCom$ to v via direct link

Birthday paradox argument:

$\Omega(\sqrt{n})$ search landmarks vs $\Omega(\sqrt{n})$ storage landmarks

\Rightarrow Search successful in $O(\log n)$ rounds (whp).
Summary

• Large-scale, highly dynamic networks are increasingly dominant in the real world.
• Distributed algorithms that are robust, efficient, and secure are required.
• Solve fundamental problems with provable guarantees, under strong models.

• We presented models, algorithms, and techniques that work even under a high amount of dynamism --- however it requires properties, such as good expansion.

• Future work: Build on current framework to design even stronger algorithms that work with minimal assumptions.
References

Towards Robust and Efficient Computation in Dynamic Peer-to-Peer Networks.
by John Augustine, Gopal Pandurangan, Peter Robinson, Eli Upfal.

Fast Distributed Computation in Dynamic Networks via Random Walks.
by Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan.
26th International Symposium on Distributed Computing (DISC), 2012.

Fast Byzantine Agreement in Dynamic Networks.
by John Augustine, Gopal Pandurangan, Peter Robinson.

Search and Storage in Dynamic Peer-to-Peer Networks.
by John Augustine, Anisur Molla, Ehab Morsy, Gopal Pandurangan, Peter Robinson, Eli Upfal.

On the Complexity of Information Spreading in Dynamic Networks.
Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, Zhifeng Sun, and Emanuele Viola.

Near-Optimal Random Walk Sampling in Distributed Networks.
Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan.
Thank You!

Publications are available at:

http://www.ntu.edu.sg/home/gopal